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Abstract

These notes are coming from a summer course that I gave in Beihang university, Beijin,

China on 15th-22th june 2019.

The aim of this course is to expose some recent developments about the regularity of

minimizers of the Griffith functional, especially the C1 regularity result in 2D contained in

[JFFA19]. Since this functional is related to the classical Mumford-Shah functional, we will

therefore review some classical facts about the Mumford-Shah functional as well.

Warning: the following notes were written fairly quickly with no careful checking.

Moreover, they are not exactly identical to what was really given during the lectures, some-

times with more elements but sometimes with less. I hope however that the material con-

tained in these notes, especially the bibliography part, could help anyone who attended the

course to go further on this subject. If the reader needs more details about some parts, or

for any other question regarding to these notes, please feel free to write me an e-mail at:

lemenant@univ-paris-diderot.fr
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1 Lecture day ♯1: Presentation of the problems and ex-

istence issues.

1.1 The Classical Mumford-Shah Problem

The Classical Mumford-Shah functional was originally cast in dimension 2 in order to solve

an image segmentation problem. In the simplest setting a given image is a L∞ function

g : Ω → R defined on a bounded planar domain Ω ⊂ R2, and one wants to find a 1-

dimensional set representing its significative jump points, where we expect the edges of the

image to lie. To do so, in 1989 Mumford and Shah [MS89] proposed to minimize the following

functional

J(u,K) =

∫

Ω

|u− g|2dx +

∫

Ω\K

|∇u|2dx+H1(K) (1)

among all pairs (u,K) ∈ A(Ω) where

A(Ω) = {(u,K) ; K ⊂ Ω is closed and u ∈W 1,2(Ω \K)}.

Actually, minimizing the functional produces two objects : the set K which represents

the edges of the image (usually called the “singular set”), and at the same time a function

u which is smooth outside this set K, and that is very close to the original image in the

L2 norm. The first term of the functional is here to guarantee the latter fact. This term

can be considered as a “Dirichlet condition”, say, and does not count much in view of the

regularity theory. The main terms of the functional are the second and third terms, which

work together as two competitive terms: if for instance, the image g has a sharp significant

jump somewhere, in other words if there is an edge in the image, then in the minimizing

process a piece of set K would be quite useful to be added in order to save some gradient of

u. But the price to pay is comparable to the length of the added set.

The functional works pretty well in practice. A numerical method can be obtained using

the phase-field approximation of Ambrosio-Tortorelli [AT92, Bou99, BC94].

In the same paper [MS89], Mumford and Shah conjecture the following.

Conjecture 1 (Mumford and Shah conjecture 1989). Let (u,K) be a reduced minimizer of

the functional J . Then K must be a finite union of C1,α arcs.

The conjecture is still open even though Bonnet has almost proved it in 1996 [Bon96].

We will try to give some more detail in Section 3. The C1,α regularity here is not sharp, but

it is just a first step to prove further regularity by standard elliptic theory. Up to now, what

is still really missing is the finite number of curves.

Let us spend some time now about the proof of existence for a minimizer.

1.2 Short review on SBV theory and weak existence for Mumford-

Shah

The existence of a minimizer can be obtained by relaxing the functional in a more general

space called SBV . Let us give here a definition.
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For any open set Ω ⊂ RN , the space BV (Ω) is the class of all functions u ∈ L1
loc(Ω,R) such

that Du (the derivative of u in the distributional sense) is a finite measure. If u ∈ (BV (Ω))N

is a BV vector field, a point z ∈ RN is an approximate limit for u at point x if

lim
ρ→0

1

|B(x, ρ)|

∫

B(x,ρ)

|u(y)− z|dy = 0.

The set Su of points where this property does not hold is called the approximate discontinuity

set of u, and the points z for which the limit exists is called an approximative limit of

u at point x and is denoted by ũ(x). A remarkable result of Federer and Vol’pert (see

[AFP00, Th. 3.78.]) says that when u ∈ (BV (Ω))N , then Su is (N − 1)-rectifiable and

Dsu (the singular part of Du with respect to LN in the Radon-Nikodym decomposition

Du = Dau + Dsu restricted to Su is absolutely continuous with respect to HN−1. We

will say that u ∈ (SBV (Ω))N when Dsu is actually concentrated on Su, which means that

Dsu(RN \ Su) = 0.

The density of the regular part Dau of Du with respect to LN , denoted by ∇u, coincides
LN -a.e. with the approximate differential of u (see [AFP00, Th. 3.83.]). A function u is

approximately differentiable at the Lebesgue point x if there exists a matrix ∇u(x) such that

lim
ρ→0

1

|B(x, ρ)|

∫

B(x,ρ)

|u(y)− ũ(x) −∇u(x).(y − x)|
ρ

dy = 0.

In the sequel we will also use the notion of trace of u on the singular set Su. Since Su

is rectifiable, one can fix an orientation νu : Su → SN−1 in such a way that for HN−1-

a.e. x ∈ Su the approximate tangent plane to Su at x is orthogonal to the vector νu(x).

Then for any x ∈ Su and ρ > 0 we define B(x, ρ)+ := B(x, ρ) ∩ {y; 〈y, νu(x)〉 ≥ 0} and

B(x, ρ)− := B(x, ρ) ∩ {y; 〈y, νu(x)〉 ≤ 0}. For HN−1-a.e. x ∈ Su, Theorem 3.77. of [AFP00]

provides the existence of traces u+(x) and u−(x) satisfying

lim
ρ→0

1

|B(x, ρ)±|

∫

B(x,ρ)±
|u(y)− u±(x)|dy = 0. (2)

The set of points x ∈ Su where u±(x) exist is called the jump set and is denoted by Ju. It

can be shown that HN−1(Su \ Ju) = 0 and for x ∈ Ju the quantity (u+(x)− u−(x)) is called

the jump of u at point x, whose sign depends on the orientation of Su. Moreover for any

u ∈ (SBV (Ω))N the representation

Du = Dau+Dsu = ∇uLN + (u+ − u−)⊗ νu HN−1|Su, (3)

holds.

Let us also mention that a simple approximation argument [AFP00, Proposition 4.4.]

says that, if K ⊂ Ω is closed and HN−1(K) < +∞, then any u ∈ L∞(Ω) ∩W 1,1(Ω \ K)

belongs to SBV (Ω) and HN−1(Su \K) = 0.

The existence of minimizers was first proved by De Giorgi, Carriero, and Leaci in [DGCL89].

Their strategy is to relax the functional on SBV , i.e. to consider

J̃(u) =

∫

Ω

|u− g|2dx+

∫

Ω

|∇u|2dx +H1(Su), u ∈ SBV (Ω),
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where Su is the singular set of u and ∇u is the approximate gradient of u (we refer to

[AFP00] for the definition of SBV ). It is quite easy to show that J̃ admits some minimizers

due to the compactness result of Ambrosio [Amb89]. It is also not difficult to see that if

(u,K) ∈ A is such that H1(K) < +∞, then u ∈ SBV (Ω) (using [AFP00, Proposition 4.4]),

and J(u,K) ≥ J̃(u) thus

inf
(u,K)∈A

J(u,K) ≥ min
u∈SBV (Ω)

J̃(u). (4)

1.3 Strong existence: Theorem of De Giorgi Carriero Leaci

The issue in [DGCL89] is then to prove the reverse inequality in (4), and this is obtained by

showing that for any minimizer u ∈ SBV (Ω) of J̃ , the singular set Su is essentially closed,

namely that H1(Su \ Su) = 0.

Indeed, then (u, Su) ∈ A and therefore

inf
(w,K)∈A

J(w,K) ≤ J(u, Su) = J̃(u) = min
v∈SBV

J̃(v).

The first ingredient in the proof of [DGCL89] is the following lemma.

Lemma 1. If u ∈ SBV (Ω), then Su is always contained in the complement of the set Ω0 of

points x ∈ Ω for which

lim
r→0

1

r

(

∫

Br(x)

|∇u|2 dx +H1(Su ∩Br(x))
)

= 0. (5)

This follows from a now famous Poincaré type estimate on SBV functions (one can

control a truncation of u minus a median by the integral of the gradient of u, provided the

jump set is small enough).

The second ingredient is a compactness argument which provides the existence of ε0 > 0

for which

1

r

(

∫

Br(x)

|∇u|2 dx +H1(Su ∩Br(x))
)

≤ ε0 =⇒ (5).

While the first fact holds for any SBV function, the second one needs u to be a minimizer.

From the above two facts it can be proved that Ω0 must be open, and that Su = Ω \ Ω0.

Then a standard argument from measure theory says that (5) must hold H1-a.e. on Ω \ Su

[DGCL89, Lemma 2.6] thus in conclusion we have that H1(Su \ Su) = 0.

Let us mention that an alternative proof of existence of minimizers without using the

theory of SBV functions is proposed in [DMMS92] (see also [Dav05, Section 36]).

Finally, two other different and very recent proofs are proposed in [BL14] in any dimension

and in [LF13] in dimension 2 (see also Section ??).

1.4 Griffith functional

1.4.1 The propagation of Fracture

According to Griffith’s theory, the propagation of a brittle fracture in an elastic body is

governed by the competition between the energy spent to produce a crack, proportional to
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its length, and the corresponding release of bulk energy. An energetic formulation of this idea

is the core of variational models for crack propagation, which were introduced by Francfort

and Marigo in [GAF98] and are based on a Mumford-Shah-type functional.

If Ω ⊂ RN (usually N = 3, sometimes N = 2 for simplicity) is the reference configuration

of an elastic body subject to a displacement u : Ω → RN with prescribed boundary datum

u = g on ∂Ω, the elastic energy is given by

1

2

∫

Ω

Ae(u) : e(u) dx, (6)

where e(u) = 1
2 (Du+DuT ) is the symmetrical part of the gradient of u, the notation “ : ”

denotes the usual scalar product on matrices, and A is the fourth order Hooke’s tensor

Ae = λTr(e)Id+ 2µe.

The constants λ > 0 and µ > 0 are the so-called Lamé coefficients, and minimizers of the

“Dirichlet type” energy (6) are solutions to an elliptic system called the Lamé system. For

a given crack K ⊂ Ω, the value of

E(K, g) := min
u∈LD(Ω\K);u=g on ∂Ω

1

2

∫

Ω

Ae(u) : e(u) dx, (7)

is called the bulk energy (the space LD being those of u ∈ L2 with e(u) in L2).

There is a particular case, called “anti-plane shear”, where the energy (6) reduces to the

classical Dirichlet energy. This happens when the domain is a cylinder Ω×R, with Ω ⊂ R2,

and assuming the crack to be vertically invariant, while the displacement is vertical only.

Under those assumptions, the problem reduces to a purely 2D scalar problem, and the energy

involved reduces to the classical Mumford-Shah energy. It is often useful to reduce to this

simpler case for which the tools from the Mumford-Shah functional can directly apply.

But one of the main difference with the original Mumford-Shah problem, is that the

growth of a crack in an elastic body is an evolution process.

For simplicity we now restrict ourselves exclusively to the case N = 2. The idea of

Francfort and Marigo is to consider, for a given time-dependent loading process g(t) on ∂Ω,

the quasi-static evolution of the Mumford-Shah type energy

G(u,K) :=
1

2

∫

Ω\K

Ae(u) : e(u) dx+ κH1(K), (8)

where the constant κ > 0 is related to the toughness of the material.

The functional (10) looks like a simple variant of the standard Mumford-Shah functional,

but it is just a foggy analogy since most of the desired regularity results are still unknown.

Not even the starting point of the regularity theory, that is, the density lower boun. In other

words there is no analogue for this functional, to the famous De Giorgi-Carriero-Leaci paper

[DGCL89]. Any C1 regularity result would be also welcome but this looks out of reach for

the moment.

Now, the construction of the evolution proceeds as follows: first discretize the time line

via 0 < t1 < · · · < tk < tk0
. Then construct (uk,Kk) by induction. If the pair is already
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constructed at time k, then (uk+1,Kk+1) is the solution for the problem

min
(u,K);K⊇Kk; u=g(tk+1) on ∂Ω

{

1

2

∫

Ω\K

Ae(u) : e(u) dx+ κH1(K)

}

. (9)

Then let maxk |tk − tk+1| tend to zero and pass to the limit. This should give a time

dependent pair (u(t),K(t)) which satisfies Griffith’s criterium for the evolution of a brittle

fracture, which in turn, reduces to write the optimality conditions related to this variational

construction. The first mathematical construction in that direction was obtained by Dal

Maso and Toader [DMT02] in the simple 2D linearized anti-plane setting, then extended in

various directions by other authors [Cha03, DMFT05, FL03, BG14].

But even if the real true object to study is the evolution of K(t) depending on time t,

some interesting questions already arise at a freezed time t0, for which the technics and tools

from the original Mumford-Shah problem could be quite useful. A general question of that

type is the following : let K(t0) be a pre-crack at time t0. How would the crack path grow

during the evolution ? Is it continuous in time ? Where it will appear ? And what direction

will be privileged ?

Examples of physical quantities related to those questions are the so-called stress intensity

factor and energy release rate, which were the central subject of the papers [CL13, BCL15]

and that we present below.

1.4.2 The stationary problem

For Ω ⊂ R2 be open with Lipschitz boundary, we consider the local Griffith energy from

fracture mechanics already defined before,

G(u,K) :=
1

2

∫

Ω\K

Ae(u) : e(u) dx+ κH1(K), (10)

defined on pairs function/set

(u,K) ∈ Ag(Ω) := {K ⊂ Ω is closed and u ∈ LD(Ω \K) ; u = g on ∂Ω}.

A Griffith minimizer, or minimizer of the Griffith energy, is a solution for the following

problem

min
(u,K)∈Ag(Ω)

G(u,K). (11)

We will see later that a minimizer (u,K) indeed do exists, and the singular set K is

rectifiable and Alhfors regular.

The main C1 result that will be described at the end of the this course, is the following

partial regularity property for the crack K.

Theorem 1.1. Let Ω ⊂ R
2 be a bounded open and sumply connected set with Lipschitz

boundary, and let (u,K) ∈ A(Ω) be a local minimizer of the functional G in Ω ⊂ R2. Then

for every isolated connected component Γ ⊂ K there exists α ∈ (0, 1) and an exceptional

compact set Z ⊂ Γ such that H1(Z) = 0 and Γ \ Z is locally a C1,α curve.
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1.5 Weak and strong existence for Griffith

Surprisingly, the existence of a Griffith minimizer (i.e. for the problem in (11)) is much

harder than the Mumford-Shah problem and was solved only very recently with very nice

mathematics. We will not have time to describe in detail all the results but let us just give a

few references. Firstly, for the weak existence, Dal Maso defined the famous GSBD space in

(2013) [Gia13] and proved the weak existence when the extra term of the form
∫

Ω
|u− g|2 is

added in the functional. This term does not have a true physical meaning according to crack

propagation but is helpful in getting compactness results. More recently, the weak existence

without this term in the same space GSBD has been obtained by a very nice paper by

Chambolle and Cristmal in [AC19], solving the problem of weak existence in full generality.

According now to the strong existence (together with Ahlfors regularity), it has been

also recently obtained by Conti, Focardi and Iurlano in [SMF18] in dimension 2, and then

by Chambolle, Conti and Iurlano in [ASF16] for higher dimensions

One key ingredient in all the above results, is the new Poincaré-Korn inequality “outside

a small jump set” that was proved by Chambolle, Conti and Francfort in [ASG17]. It is a

new and more elementary approach generalizing an inequality which is known to be proved

in SBV using the co-area formula (which is not available in SBD).

1.6 Korn Inequalities

A fundamental tool in elasticity theory is the so-called Korn inequality. Let us present this

important inequality in this first lecture.

Notation: For u : Ω ⊂ Rn → Rn we denote by e(u) := Du+DuT

2 the symmetrized gradient.

A “rigid movement” is an affine function a(x) = Ax + b with A ∈ Mn(R) a skew-

symmetric matrix. In other words e(a) = 0. We denote by LD(Ω) the space of all u ∈
L2(Ω;Rn) such that e(u) ∈ L2(Ω).

Proposition 1 (Korn inequalities). Let Ω ⊂ Rn be a smooth domain. There exists C > 0

such that:

1. For all u ∈ LD(Ω) there exists a rigid movement a depending on u satisfying
∫

Ω

|u− a|2 dx ≤ C

∫

Ω

|e(u)|2dx

2. For all u ∈ LD(Rn) we have
∫

Ω

|u|2 dx ≤ C

∫

Ω

|e(u)|2 dx

3. For all u ∈ LD(Ω) there exists a skew-symetric matrix A depending on u satisfying
∫

Ω

|Du−A|2 dx ≤ C

∫

Ω

|e(u)|2dx

Remark 1. 1. Inequality 3. is called “Korn” inequality whereas 1. are 2. are called

“Poincaré-Korn” inequality.

2. The proof of 1. and 2. can be proved “by hand” whereas the proof of 3. is more subtil

and uses some harmonic analysis estimates and functional analysis.
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3. 1. 2. and 3. are still true in what is called “John Domains”, which is a mild regu-

larity assumption on the domain. But it is not true in general without any regularity

assumption on the domain.

4. Inequality 3. implies inequality 2. by the standard Poincaré inequlaity.

5. All the above have an Lp analogue with p 6= 2.

Proof. Let us give a sketch of proof for 1. and 2. Actually, one can prove it “by hand” using

the fundamental theorem of calculus. The main point is that, if ξ ∈ S1 is any direction then

∂

∂ξ
(ξ · u(x)) = ξ · e(u)(x)ξ

so that

ξ · u(x)− ξ · u(x+ ξ) =

∫ 1

0

ξ · e(u)(x+ tξ)ξ dt.

Let now Q = [0, 1]n and assume that u ∈ C∞
c (Q;R2), in particular, u = 0 on ∂Q. Then

∀1 ≤ i ≤ n

ei · u(x) = ei · (u(x)− u(x+ ei)) =

∫

[x,x+ei]

ei · e(u) dH1,

which implies

|ei · u(x)| ≤
∫

[x,x+ei]

|e(u)|dH1.

summing over i and using the equivalence between ‖ · ‖1 and ‖ · ‖2 on R2 we deduce

|u(x)| ≤ C

n
∑

i=1

∫

[x,x+ei]

|e(u)| dH1

and then

|u(x)|2 ≤ C

n
∑

i=1

∫

[x,x+ei]

|e(u)|2 dH1.

Finally it is an easy exercice using Fubini’s theorem to prove that

∫

Q

n
∑

i=1

∫

[x,x+ei]

|e(u)|2 dH1dx ≤
∫

Q

|e(u)|2 dx,

thus integrating the above over x we have proved

∫

Q

|u(x)|2dx ≤ C

∫

Q

|e(u)|2 dH1.

By doing the same with any cube Q = [−R,R]n large as we want we obtain the same

inequality for any u ∈ C∞
c (Rn) which finishes the proof of inequality 2.

The proof of 1. is more complicated but can also be done “by hand” from the fundamental

theorem of calculus. First we observe that it is enough to find an affine function b (not

necessarily rigid) satisfying the same inequality (i.e. b in place of a), because then we can

project u on affine functions: the projection a will be rigid and the integral with a will be

lower than the one with b.
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Then one has to choose an appropriate simplex T ⊂ Ω and use an affine approximation of

u, denoted by b on this simplex. Next, denoting by yi the vertices of the simplex T , for each

point x in Ω, we can estimate the oscillations of u · ξ(x) − u · ξ(yi) on each segment [yi, x],

where ξi(x) =
x−yi

|x−yi|
. Then an elementary argument from convex analysis gives that all the

directions ξi(x), for 1 ≤ i ≤ n and x fixed are “uniformly non-colinear” so that the norm

|u − b|(x) can be estimated by the quantities |(u − b) · ξi| and we conclude by integrating

everything. For more details, one can read the paper [Chambolle Conti Francfort] where this

construction has been performed in the more general case when Ω contains a small singular

set K (and therefore one has to furthermore guarantee the segments [yi, x] to not touch the

singular set K. This can be done by averaging everything provided the total length of K is

small enough).

Now we come to the proof of inequality 3., which is more difficult and cannot be proved by

elementary inequalities as for 1. and 2. The main ingredient for 3., as explained in [Villani]

is a nice second order computation. Indeed, for u smooth we have the identity:

∂2uk
∂xi∂xj

= ∂i(e(u))jk + ∂j(e(u))ik − ∂k(e(u))ij . (12)

In other words: “D2u is a matrix combination of De(u)”.

Then we can use the following Lemma from harmonic analysis:

Lemma 2. For any Ω ⊂ R
n, smooth, there exists a constant C > 0 such that for all

f ∈ L2(Ω),

‖∇f‖2H−1(Ω) ≤ n‖f −mf‖2L2(Ω) ≤ C(Ω)‖∇f‖2H−1(Ω),

where mf is the average of f on Ω.

Then one can obtain last Korn’s inequality by use of this lemma together with the com-

putation in (12). For more details one can see [Villani]. One can also see [finlandais] for a

proof in more general John domains.
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2 Lecture Day ♯2: Regularity for connected almost min-

imal sets in R2.

In order to understand the scheme of proof of C1 regularity for Mumford-Shah type problems,

we first review a classical C1 regularity proof for almost minimizers of length, i.e. when we

locally minimize only the surface area term, without the Dirichlet energy.

2.1 Geometrical facts

Definition 1 (Hausdorff distance). For K,K ′ ⊂ R2 two compact sets we define

dH(K,K ′) := max

{

sup
x∈K′

dist(x,K) , sup
x∈K

dist(x,K ′)

}

Proposition 2 (Blashke principle). If A ⊂ R2 is compact, and (Kn)n∈N is a sequence of

compact subsets of A, then we can find a compact subset K ⊂ A and a subsequence such that

Knk
→ K for dH . Moreover, if Kn is connected for all n then K is connected as well.

Definition 2. For any subset K ⊂ R2, closed we define

H1(K) := sup
ε>0

inf

{

∞
∑

i=1

1

2
diam(Ai)

}

,

where the infimum is taken over all countable families {Ai}∞i=1 of closed sets Ai such that

K ⊂ ⋃∞
i=1 Ai and diam(Ai) ≤ ε.

Here are the things you might need to know about the Hausdorff measure H1.

Proposition 3.

1. K 7→ H1(K) is a measure on the Borelians of R2.

2. The measure H1 generalizes the “lenght”, in the sense that if γ : [0, 1] → R2 is a C1

and injective curve then

H1(γ([0, 1])) =

∫

[0,1]

|γ′(t)|dt.

3. We can use H1 to integrate by parts on smooth domains, for instance on balls, for any

smooth vector field Φ : R2 → R2

∫

B(x,r)

div Φ dx =

∫

∂B(x,r)

Φ · ν dH1,

ν being the outer normal vector on ∂B(0, r).

4. (Theorem of Golab) If (Kn)n∈N and K are compact and connected sets such that Kn →
K for the Hausdorff distance, then

H1(K) ≤ lim infH1(Kn).
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For any closed set K ⊂ R2 we define the “flatness”

βK(x, r) := inf
L∋x

dH(K ∩B(x, r), L ∩B(x, r))

where the infimum is taken among all affine lines L ⊂ R2 containing x. We will sometimes

use the notation β(x, r) instead of βK(x, r).

Lemma 3. Let K ⊂ R2 be a closed set containing the origin and satifying, for some constants

C, r0, α > 0,

βK(x, r) ≤ Crα ∀x ∈ K ∩B(0, 1) and r ≤ r0.

Then there exists some a ∈ (0, 1) depending only on C, r0, and α such that K ∩B(0, a) is a

10−2-Lipschitz graph as well as a C1,α regular curve.

Proof. For every x ∈ K ∩B(0, 1) and 0 < r ≤ r0 we denote as usual by L(x, r) an affine line

which approximates K ∩B(x, r), i.e. such that

max
{

sup
z∈K∩B(x,r)

dist(z, L(x, r)), sup
z∈L(x,r)∩B(x,r)

dist(z,K)
}

≤ β(x, r)r ≤ Cr1+α. (13)

In addition, we denote by τ(x, r) ∈ S1/{±1} a non oriented unit vector which is tangent to

L(x, r) and defined modulo ±1. For τ1, τ2 ∈ S1/{±1} we can use for instance the complete

distance

dS(τ1, τ2) := min(|τ1 − τ2|, |τ1 + τ2|).

We will prove the Lemma within 4 steps.

Step 1. Existence of tangents. For all k ∈ N we denote by rk := 2−kr0. We claim that

τ(x, rk) converges to some vector τ(x) at x when k goes to +∞. For that purpose we first

prove that for all k ≥ 0, and for all x ∈ K ∩B(0, 1) we have

dS
(

τ(x, rk+1), τ(x, rk)
)

≤ 9Crαk .

Indeed, let z := x + τ(x, rk+1)rk+1 ∈ L(x, rk+1). Because of (13) we know that there exists

y ∈ K ∩B(x, rk+1) such that |z − y| ≤ Cr1+α
k+1 and in particular,

rk+1 − Cr1+α
k+1 ≤ |y − x| ≤ rk+1 (14)

Then, if we denote by v := y−x
|y−x| we have that

dS
(

v, τ(x, rk+1)
)

≤ |v − τ(x, rk+1)| =
∣

∣

y − x

|y − x| −
z − x

rk+1

∣

∣

≤
∣

∣

y − x

|y − x| −
y − x

rk+1

∣

∣+
1

rk+1

∣

∣z − y
∣

∣

≤ |rk+1 − |y − x||
rk+1

+ Crαk+1

≤ 2Crαk+1, (15)

where we also have used (14) to get the last inequality.
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But then similarly, since y ∈ B(x, rk), there exists z
′ ∈ L(x, rk) such that |y−z′| ≤ Cr1+α

k .

By (14) again we can estimate

|z′ − x| ≤ |y − x|+ |z′ − y| ≤ rk+1 + Cr1+α
k

and

|z′ − x| ≥ |y − x| − |z′ − y| ≥ rk+1 − Cr1+α
k+1 − Cr1+α

k ≥ rk+1 − 2Cr1+α
k ,

thus a computation similar to the one of (15) leads to

dS
(

v, τ(x, rk)
)

≤ |v − z′ − x

|z′ − x| | =
∣

∣

y − x

|y − x| −
z′ − x

rk+1

∣

∣

≤
∣

∣

y − x

|y − x| −
y − x

rk+1

∣

∣+
∣

∣

y − x

rk+1
− z′ − x

rk+1

∣

∣+
∣

∣

z′ − x

|z′ − x| −
z′ − x

rk+1

∣

∣.

≤ Crαk+1 + C
r1+α
k

rk+1
+ 2C

r1+α
k

rk+1
≤ 7Crαk . (16)

Gathering together the above two inequalities we obtain

dS(τ(x, rk), τ(x, rk+1)) ≤ dS(τ(x, rk), v) + dS(v, τ(x, rk+1)) ≤ 9Crαk = 9Crα0 2
−kα,

as claimed. It follows that for all k, l ≥ k0,

dS
(

τ(x, rk), τ(x, rl)
)

≤
+∞
∑

i=k0

9Crα0 2
−iα = 2−k0α

(

9Crα0
1− 2−α

)

.

Since the latter can be made as small as desired, provided k0 is big enough, we deduce that

τ(x, rk) is a Cauchy sequence in S1/{±1}. Therefore it converges to some vector, that we

denote τ(x), for all x ∈ K ∩ B(0, 1). In particular, letting l → +∞ we get the following

estimate, for all k ≥ 0,

dS
(

τ(x, rk), τ(x)
)

≤ C′rαk ,

where

C′ :=

(

9C

1− 2−α

)

.

Moreover, it can be easily seen through the distance estimate (13), that x + Rτ(x) is a

tangent line for the set K at point x.

Step 2. Hölder estimate on tangents. We now prove that the mapping x 7→ τ(x) is Hölder

continuous. Let x and y be two different points of K ∩B(0, 1) and let ρ := |y − x|. Assume

first that ρ ≤ r0/4 and let k ∈ N be such that

rk+2 ≤ ρ ≤ rk+1.

We have that

dS
(

τ(x), τ(y)
)

≤ dS
(

τ(x), τ(x, rk )
)

+ dS
(

τ(x, rk), τ(y, rk)
)

+ dS
(

τ(y, rk), τ(y)
)

≤ 2C′rαk + dS
(

τ(x, rk), τ(y, rk)
)

. (17)
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Now to estimate dS
(

τ(x, rk), τ(y, rk)
)

, we notice that y ∈ B(x, rk) thus there exists z ∈
P (x, rk) such that |y − z| ≤ Cr1+α

k . Let us denote by v := y−x
y−x . By a computation very

similar to the one of (15) or (16) above, we get

dS(v, τ(x, rk)) ≤ 2Crαk .

Inverting the role of x and y yields also

dS(v, τ(y, rk)) ≤ 2Crαk ,

from which we deduce, returning back to (17), that

dS
(

τ(x), τ(y)
)

≤ 2C′rαk + 2Crαk ≤ 2(C′ + C)22αrαk+2 ≤ 2(C′ + C)22α|x− y|α. (18)

Now in the case when ρ ≥ r0/4 we can simply estimate

dS
(

τ(x), τ(y)
)

≤ 2 ≤ 2
4α

rα0
|x− y|α,

which finally yields, for general x, y ∈ K ∩B(0, 1),

dS
(

τ(x), τ(y)
)

≤ C′′|x− y|α, (19)

with C′′ := max
(

24αr−α
0 , 2(C′ + C)22α

)

.

In other words, we have proved that K admits a tangent everywhere on B(0, 1) and that

tangent lines behaves nicely. We will prove now thatK∩B(0, a) is a curve for a small enough.

Actually, a convenient way to prove that fact is to show the following stronger property: for

some a ∈ (0, 1) small enough, K ∩B(0, a) is a Lipschitz graph.

Step 3. K ∩B(0, a) is a Lipschitz graph. Let a be a small parameter that will be fixed later.

We first show that for a small enough, K ∩B(0, a) is a graph above the line Rτ(0), that we

assume for simplicity that it is oriented by e1. Notice that for all x ∈ K ∩B(0, a),

dS(τ(x), e1) ≤ C′′(2a)α, (20)

which means that for a small, all the tangents are oriented almost horizontally in K∩B(0, a).

Now we assume by contradiction that one can find two points x, y ∈ K ∩ B(0, a) such

that x1 = y1. Let ρ := 10|x− y| = 10|x2 − y2| ≤ 20a ≤ r0/10, and let k be such that

rk+1 ≤ ρ ≤ rk.

By (20) we know that dS(τ(x), τ(y)) ≤ 2C′′(2a)α. Let us denote Tx := x+Rτ(x). Since

y ∈ B(x, rk), by (13) we infer that

dist(y, Tx) ≤ dist(y, L(x, rk)) ≤ Cr1+α
k ≤ Caαrk.

We deduce that, for some universal constant c0 > 0,

|x2−y2| = dist(y, x+Re1) ≤ dist(y, Tx)+c0rkdS(τx, e1) ≤ aα(C+c0C
′′2α)rk ≤ aαC′′′|x2−y2|,
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which is a contradiction for a small enough (depending on C′′′), which proves thatK∩B(0, a)

must be a graph above the segment [−a, a] × {0}. Now to prove that the graph is 10−3-

Lipschitz for a slightly smaller enough, we can reproduce the same argument but for x, y ∈
K ∩ B(0, a) satisfying now, by contradiction, |x2 − y2| ≤ 10−3|x1 − y1|. The details are left

to the reader.

Step 4. Conclusion. We have proved that K ∩ B(0, a) is the 10−3-Lipchitz graph of some

function f on [−a, a]. Moreover, the tangent line to the graph of f at point (t, f(t)), which

exists for a.e. t ∈ [−a, a], concides with the tangent line x+Rτ(x) to K at point x = (t, f(t)).

Since the map x 7→ τ(x) is α-Hölder continuous, it follows that the map t 7→ f ′(t) cöıcides

a.e. on [−a, a] with an α-Hölder continuous function. A simple smoothing argument then

implies that f ∈ C1,α on [−a, a], and K ∩B(0, a) is then a C1,α curve.

Lemma 4. Let K ⊂ R2 be a H1-rectifiable set. Then for all 0 < s < r and x ∈ R2 we have
∫ r

s

#(K ∩ ∂B(x0, t)) dt ≤ H1(K ∩B(x0, r) \B(x0, s)). (21)

Proof. Applying the area formula [AFP00, Theorem 2.91] to the H1-rectifiable set E :=

K ∩B(x0, r) \B(x, s) and the Lipschitz function f : x 7→ |x| yields
∫ r

s

#(K ∩ ∂B(x0, t)) dt =

∫

R

H0(E ∩ f−1(t)) dt =

∫

E

JdEf dH1,

where, H1-a.e. in E, JdEf denotes the 1-dimensional coarea factor associated to the tangen-

tial differential dfE . Since E admits an approximate tangent line oriented by a unit vector

τ at H1-a.e. points, we deduce that

JdEfx =

∣

∣

∣

∣

x

|x| · τ
∣

∣

∣

∣

≤ 1 H1-a.e. in E,

which leads to (21).

2.2 Regularity for connected almost minimal sets in R2.

For Ω ⊂ R
2, bounded, we denote by K(Ω) all the compact connected sets K ⊂ Ω. We denote

by H1 the 1-dimensional Hausdorff measure. A gauge function h is an increasing function

h : R+ → R+.

Definition 3. We say that K ∈ K(Ω) is almost minimal in Ω with jauge function h if, for

all ball B ⊂ Ω of radius r > 0 and competitor K ′ ∈ K(Ω) for K in B (which means K = K ′

in Ω \B) we have:

H1(K ∩B) ≤ H1(K ′ ∩B) + rh(r).

Example 1. For instance it can be proved by a variant Golab’s theorem (see [DPLM17,

Theorem 3.6]) that the solution of the following weighted Steiner minimizing problem do

exists: for some given points (xi)
N
i=1 ⊂ Ω, and for w : R2 → R continuous, and bounded from

below (i.e. infxw(x) ≥ α > 0),

min
K∈K(Ω)

∫

K

w(x) dH1(x),
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and a minimizer is an almost minimal set.

Remark 2. From the definition of almost minimality, one easily see by taking a sequence

of open balls B(x, r + ε) with ε → 0, that if the competitor K ′ ∈ K(Ω) satisfies K = K ′ in

Ω \B we have in this case:

H1(K ∩B) ≤ H1(K ′ ∩B) + rh(r).

Remark 3 (Alhfors-regularity). If K ∈ K(Ω) is almost minimal in Ω with jauge function

h then for every r < r0 := diam(K) such that B(x, r) ⊂ Ω, by considering the competitor

K ′ := (K \B(x, r)) ∪ ∂B(x, r) we obtain the upper bound

H1(K ∩B(x, r)) ≤ 2πr + h(r)r ≤ (2π + h(r0))r.

On the other hand since K is connected and r < r0 := diam(K) we also have the lower bound

H1(K ∩B(x, r)) ≥ r.

Remark 4 (Uniform rectifiability). K is Ahlfors-regular. Since K is furthermore connected

with locally finite H1 measure, it follows that K is automatically uniformly rectifiable in the

sense of David and Semmes.

The main purpose of this section is to prove the following ε-regularity result.

Theorem 2.1 (Flatness implies regularity). Let K ∈ K(Ω) be an almost minimal set in Ω

with jauge function h satisfying h(r) ≤ Crα for all r > 0. Then

β(x, r) + h(r) ≤ 10−3 =⇒ K ∩B(x, r/10) is a C1,α/2 regular curve. (22)

Actually, the above result is not the better regularity result that one can obtain about

almost minimal sets. Here is the optimal statement:

Theorem 2.2. Let K ∈ K(Ω) is almost minimal in Ω with jauge function h satisfying

h(r) ≤ Crα. Then K is a finite union of C1,α/2 curves meeting only by 3 with 120 angles.

But in those notes we will mainly focus only on the simpler Theorem 2.1 that we shall try

to adapt for other problems later, for which the better Theorem 2.2 is not available. Notice

however the interesting following corollary of Theorem 2.1.

Remark 5. Using some “porosity” type arguments and Carlson measure estimates, if (22)

holds for some uniformly rectifiable set K, then K is C1,α regular outside a singular set of

dimension s < 1.

In the sequel we give a complete proof of Theorem 2.1.

2.3 The height estimate

Lemma 5. Let γ : [0, 1] → R
2 be a curve with endpoints z = γ(0) and z′ = γ(1), with image

Γ := γ([0, 1]). Then

dist(y, [z, z′])2 ≤ H1(Γ)
(

H1(Γ)− |z′ − z|
)

2
for all y ∈ Γ. (23)
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Proof. Let ȳ be a maximizer of the function y ∈ Γ 7→ dist(y, [z, z′]), i.e., ȳ is the most distant

point in Γ to the segment [z, z′], and define d =: dist(ȳ, [z, z′]). Let us consider the point

y′ ∈ R2 making (z, z′, y′) an isosceles triangle with same height d. Denoting by a := |z−z′|/2
and L := |y′ − z|, according to Pythagoras Theorem, we have

d2 = L2 − a2 = (L− a)(L+ a).

b

b

z = γ(0)

Γ

d

ȳ

y′

a

z′ = γ(1)

b

b

L

Figure 1: The height estimate from Pythagoras inequality.

Thus H1(Γ) ≥ |z − ȳ|+ |ȳ − z′| ≥ 2L and H1(Γ) ≥ |z − z′| so that

d2 ≤ 1

4

(

H1(Γ)− |z − z′|
) (

H1(Γ) + |z − z′|
)

≤ H1(Γ)
(

H1(Γ)− |z − z′|
)

2
,

which proves (23).

Corollary 1 (Control of flatness by the Excess). Let K ∈ K(Ω) be Ahlfors-regular. Let

x ∈ K and r > 0 be such that K ∩ B(x, r) is connected and ♯(K ∩ ∂B(x, r)) = 2. Then

denoting by {z, z′} those two points, if they lie “on both sides” we have

βK(x, r)2 ≤ C

r

(

H1(K ∩B(x, r)) − |z − z′|
)

.

2.4 Proof of Theorem 2.1

We start with an easy density bound.

Proposition 4. Let K ∈ K(Ω) be an almost minimal set with gauge function h and such

that β(x, r) ≤ 1
10 . Then

H1(K ∩B(x, r)) ≤ 2r + 10rβ(x, r) + rh(r).

Proof. We denote by L(x, r) the best line that realizes the infimum in the definition of β(x, r)

and

W := {x ∈ ∂B(x, r) : dist(x, L(x, r)) ≤ rβ(x, r)}.

We notice that

H1(W ) ≤ 4r arcsin(β(x, r)) ≤ 10rβ(x, r),
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because β(x, r) ≤ 1/10 and arcsin′(t) ≤ 2 for t ∈ [0, 1/10]. We then use the competitor

defined by

K ′ := (K \B(x, r)) ∪ (L(x, r) ∩B(x, r)) ∪W.

It is easy to check that K ′ ∈ K(Ω) and by almost minimality one has

H1(K ∩B(x, r)) ≤ H1(K ′ ∩B(x, r)) + rh(r) = 2r + 10rβ(x, r) + rh(r),

and the proposition is proved.

A topological Lemma (left to the reader).

Lemma 6. Let K ∈ K(Ω). If ♯(K ∩ ∂B(x, r)) = 2 and K ∩ B(x, r) is not connected, then

K \B(x, r) is connected.

Corollary 2. Let K ∈ K(Ω) be an almost minimal set with gauge function h. Assume that

h(r0) ≤ 1/2. Then for every r ≤ min(r0, diam(K)) and x ∈ K such that B(x, r) ⊂ Ω, the

following holds:

1. ♯(∂B(x, r)) ≥ 2

2. if ♯(∂B(x, r)) = 2 then K ∩B(x, r) is connected.

3. if ♯(∂B(x, r)) = 2 and β(x, r) ≤ 1/2 then K ∩ ∂B(x, r) are on “both sides”

Proof. If ♯(K ∩ ∂Br) = 0 or ♯(K ∩ ∂Br) = 1 then K \B(x, r) is connected thus K \B(x, r)

is a competitor. But since x ∈ K and r < diam(K), it follows that H1(K ∩ B(x, r)) ≥ r.

On the other hand it is an almost minimizer thus

r ≤ H1(K ∩B(x, r)) ≤ rh(r) ≤ 1

2
r,

a contradiction. This achieves the proof of (1).

To prove (2), we assume by contradiction that K∩B(x, r) is not connected. Then Lemma

6 says that K \ B(x, r) is a competitor thus again, we have a contradiction arguing exactly

as for the proof of (1).

To prove the last item we argue by contradiction. If K ∩ ∂B(x, r) lie not “on both sides”

then the competitor given by a little wall on one side gives a contradiction.

We can now give the main flatness estimate from which the proof of Theorem 2.1 easily

follows using also Lemma 3.

Proposition 5. Let K ∈ K(Ω) be an almost minimal set with gauge function h. If

β(x, r) + h(r) ≤ 10−3,

then

β(x,
r

2
) ≤ C

√

h(r).

Proof. We start applying Proposition 4 which says that

H1(K ∩B(x, r)) ≤ 2r + 10rβ(x, r) + rh(r) ≤ 2r + 10−2r.
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This estimate, together with the coarea formula (21) will allow us to find some radius s ∈
[ r2 , r] such that ♯K ∩ ∂B(x, s) = 2. Indeed,

∫ r

0

#(K ∩ ∂B(x0, t)) dt ≤ H1(K ∩B(x0, r)) ≤ 2r + 10−2r.

Now let A2 ⊂ (0, r) be defined as

A2 := {t ∈ (0, r) ; #(K ∩ ∂B(x0, t)) 6= 2}.

By Corollary 2 we know that #(K ∩ ∂B(x0, t)) > 3 for all t ∈ A2 thus

∫ r

0

#(K ∩ ∂B(x0, t)) dt ≥ 3|A2|+ 2(r − |A2|) = |A2|+ 2r,

and therefore

|A2| ≤ 10−2r.

This means that there exists s ∈ [r/2, 2] such that s 6∈ A2. In particular #(K∩∂B(x0, s)) = 2

and by corollary 2 we know that K ∩B(x0, s) is connected and {z, z′} := K ∩ ∂B(x0, s) lie

on “both sides”. We can apply Corollary 1 which gives

βK(x, s)2 ≤ C

s

(

H1(K ∩B(x, s))− |z − z′|
)

.

But the competitor (K \B(x0, s)) ∪ [z, z′] is connected, thus by minimality we get

H1(K ∩B(x, s)) ≤ |z − z′|+ sh(s),

so finally

βK(x, r/2)2 ≤ 4β(x, s)2 ≤ Ch(r).
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3 Lecture day ♯3: Existence and regularity for connected

minimizers of the Mumford-Shah functional

Now we focus on the Mumford-Shah functional, for Ω ⊂ R2 a bounded, connected, open set

with smooth boundary and g ∈ L∞(Ω),

J(u,K) := min
(u,K)

∫

Ω\K

|∇u|2 dx+

∫

Ω

|u− g|2 dx+H1(K),

where the minimum is taken among all pairs (u,K) ∈ AC(Ω) and

AC(Ω) := {(u,K) ; K ⊂ Ω is closed, connected, and u ∈W 1,2
loc (Ω \K)}.

3.1 Existence

Proposition 6. For every g ∈ L∞(Ω), there exists a minmizer for the problem

min
(u,K)∈AC

J(u,K).

Proof. First we notice that the infimum is not +∞ because for instance the pair (1, ∅) is

admissible and has finite energy.

We let (un,Kn) be a minimizing sequence. Since Kn is a sequence of compact and

connected sets in the compact set Ω, by Blashke we know that (up to extract a subsequence)

Kn → K ⊂ Ω for the Hausdorff distance where K is compact connected and by Golab we

also know that

H1(K) ≤ lim inf
n→+∞

H1(Kn).

Now we use the energy bound

sup
n

∫

Ω\Kn

|∇un|2 dx +

∫

Ω

|un − g|2 dx ≤ C (24)

which in particular says that ∇un is uniformly bounded in L2(Ω \ Kn) = L2(Ω). This

means that, up to a subsequence, ∇un weakly converge in L2(Ω) to some vector valued

function Φ ∈ L2(Ω) and due to the lower semicontinuity of the Dirichlet energy under weak

convergence (because it is a convex functional) we infer that

∫

Ω

|Φ|2 dx ≤ lim inf
n→+∞

∫

Ω

|∇un|2 dx.

By the argument on un − g, we also have that un converges weakly in L2 to some function

u and that
∫

Ω

|u− g|2 dx ≤ lim inf
n→+∞

∫

Ω

|un − g|2 dx.

To finish the proof, it suffice to prove that u ∈ W 1,2
loc (Ω \ K) and that Φ = ∇u in Ω \ K

because then (u,K) would belong to AC(Ω) and the above semicontinuity inequalities proves

that it is a minimizer.

For that purpose we let Aj ⊂ Ω \ K be a countable exhaustion of Ω \ K by smooth

domains, i.e. Ω \K =
⋃

j Aj and Aj ⊂ Aj+1. From the Hausdorff convergence of Kn to K,
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we know that Aj ⊂ Ω \Kn for n large enough, depending on j, thus by (24) we deduce that

the sequence un is bounded in W 1,2(Aj) for each Aj fixed (for n large enough depending

on j). Therefore, we can extract a subsequence (depending on j), such that un converges

strongly in L2(Aj) and weakly in W 1,2(Aj) to some function, which by uniqueness of the

limit must be u. We deduce that ∇u = Φ in all the Aj , thus a.e. in Ω\K, and u ∈W 1,2(Aj)

for all j thus finally u ∈W 1,2
loc (Ω \K).

Let

AC := {(u,K) : u ∈W 1,2(Ω \K) and K ⊂ Ω is closed and connected}.

In the rest of this lecture we study the following problem, for some given smooth function

g : R2 → R,

min
(u,K)∈AC : u=g on ∂Ω\K

∫

Ω\K

|∇u|2dx+H1(K). (25)

3.2 C1 regularity for Mumford-Shah

We now come to the proof of Bonnet about the C1 regularity of the singular set, for a

Mumford-Shah minimizer.

Theorem 3.1 (Bonnet). Let (u,K) be a minimizer in AC . Then K is a finite union of

C1,α curves.

The proof is based on two main ingredients: monotonicity and blow-up technics. We will

not prove the entire of Bonnet’s result but give some ideas.

One of his key tool is the monotonicity behavior of the Dirichlet energy that will need

the following preliminary elementary facts.

3.2.1 Preliminaries

Lemma 7 (Poincaré-Wirtinger). Let I ⊂ ∂B(0, r) be an arc of circle and u ∈ W 1,2(I).

Then
∫

I

|u−mu|2dH1 ≤
(H2(I)

π

)2 ∫

I

∣

∣

∣

∣

∂u

∂τ

∣

∣

∣

∣

2

dH1,

where mu := 1
H1(I)

∫

I
u dH1.

Proof. use Fourier Series.

Definition 4. Let K ∈ KC(Ω). We say that u ∈ W 1,2(Ω \ K) is a local Dirichlet energy

minimizer (in short, u ∈ LDEM(Ω \K)) if for all ball B ⊂ Ω and for all v ∈ W 1,2(Ω \K)

satisfying v = u in Ω \B we have

∫

B\K

|∇u|2dx ≤
∫

B\K

|∇v|2dx.
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Remark 6. If u ∈ LDEM(Ω \K) then it satisfies the following problem in a weak sense,

(P )

{

−∆u = 0 in Ω \K
∂u
∂ν = 0 on K.

Remark 7. If (u,K) is a Mumford-Shah minimizer (i.e. minimizes (25)), then u ∈
LDEM(Ω \K).

Proposition 7 (Integration by parts). If K ∈ KC(Ω) and u ∈ LDEM(Ω \K) then for all

ball B(x, r) ⊂ Ω we have

∫

B(x,r)\K

|∇u|2dx =

∫

∂B(x,r)

u
∂u

∂ν
dH1.

Proof. We can get this expression formally by use of an integration by parts and Remark

(6), namely,

∫

B(x,r)\K

|∇u|2dx = −
∫

B(x,r)

u∆u+

∫

∂B(x,r)

u
∂u

∂ν
dH1 +

∫

K∩B(x,r)

u
∂u

∂ν
dH1

=

∫

∂B(x,r)

u
∂u

∂ν
dH1,

where we have use the equation in problem (P). But to prove rigorously this formula we can

use the weak formulation of Problem (P), which is

∫

Ω\K

∇u · ∇ϕdx = 0

for all ϕ ∈ W 1,2(Ω) compactly supported inside Ω. Let ϕε = uψε where ψε is a cut-off

function, which is of the form ψε = fε(|x|), where fε = 1 on [0, (1 − ε)r] and 0 outside

[r + ε,+∞[. Testing with this function ϕε yields

∫

Ω\K

∇u · u∇ψεdx+

∫

Ω\K

∇u · ψε∇udx = 0.

As ε→ 0, one easily gets that the second term converges to
∫

B(x,r)\K
|∇u|2dx by the domi-

nated convergence theorem. For the first term, we compute

∇ψε =
x

2ε|x|1B(x,r+ε)\B(x,r−ε),

from which we get
∫

Ω\K

∇u · u∇ψεdx→
∫

∂B(x,r)\K

u
∂u

∂ν
dH1.

3.2.2 The monotonicity formula of Bonnet

One of our main ingredient to prove Lemma ?? will be a monotonicity formula.
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Proposition 8 (Monotonicity Formula of Bonnet). Let Ω ⊂ R2 be open, and assume that

K ⊂ Ω is a closed and connected set of finite length. Let u be an energy minimizer i.e.

satisfying
∫

B\K

|∇u|2dx ≤
∫

B\K

|∇v|2dx,

for any B ⊂ Ω and for any v that is equal to u in Ω \B (the function u is therefore the weak

solution of a Neumann problem, ∆u = 0 in Ω \K and ∂u
∂ν = 0 on K).

For any point x0 ∈ K we denote

E(r) :=

∫

B(x0,r)\K

|∇u|2dx.

Then r 7→ E(r)/r is an increasing function of r on (0, dist(x0, ∂Ω)). As a consequence, the

limit lim
r→0

(E(r)/r) exists and is finite.

Moreover, if r 7→ E(r)/r is a non zero constant on some interval (a, b), then for r ∈ (a, b),

K∩∂Br is a single point and the restriction of u on ∂Br\K for r ∈ (a, b) must be the optimal

function in Wirtinger’s inequality.

Proof. Let us assume without loss of generality that x0 is the origin. Firstly, it is easy to

show that E admits a derivative a.e. and

E′(r) :=

∫

∂B(0,r)\K

|∇u|2dx. (26)

In addition E is absolutely continuous. Therefore, to prove the monotonicity of r 7→ 1
rE(r),

it is enough to prove the inequality

E(r) ≤ rE′(r) for a.e. r ≤ r0, (27)

because this implies
(

1
rE(r)

)′ ≥ 0 a.e.

We will need Wirtinger’s inequality (see e.g. page 301 of [Dav05]), i.e. for any arc of

circle Ir ⊂ ∂B(0, r) and for g ∈W 1,2(Ir) we have

∫

Ir

|g −mg|2dK ≤ 4

( |Ir |
2π

)2 ∫

Ir

|g′|2dK (28)

where mg is the average of g on Ir. The constant 4 here is optimal, and is achieved by the

function sin(θ/2) on the arc of circle {θ ∈]− π, π[}. This will be needed later.

Observe that since K has a finite length, we know that ♯K ∩ ∂B(0, r) is finite for a.e.

r ∈ (0, r0). We take such a radius and decompose Sr := ∂B(0, r) \K into a finite number of

arcs of circle denoted Ij , for j = 1..N . Moreover since K is closed and connected, for each

j there exists a geodesic simple curve Fj ⊂ K connecting the two endpoints of Ij (here is

where connectedness plays a role). We denote by Dj the domain delimited by Ij and Fj .

Observe that the domains Dj for j = 1..N are disjoint.

The Gauss-Green formula (that can by justified easily here by a variational argument)

applied in B(0, r) yields

∫

B(0,r)\K

|∇u|2dx =

N
∑

i=1

∫

Ij

u
∂u

∂ν
dK, (29)
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and applied in Dj gives
∫

Ij

∂u

∂ν
dx =

∫

Dj

∆udx = 0.

Denoting by mj the average of u on Ij we deduce that

∫

Ij

u
∂u

∂ν
dσ =

∫

Ij

(u −mj)
∂u

∂ν
dσ. (30)

Then by use of Cauchy-Schwarz inequality and ab ≤ 1
2λa

2 + λ
2 b

2 we can write

∫

Ij

|u−mj |
∣

∣

∣

∣

∂u

∂ν

∣

∣

∣

∣

dσ ≤
(

∫

Ij

|u−mj |2
)

1
2
(

∫

Ij

|∂u
∂ν

|2
)

1
2

≤ 1

2λ

∫

Ij

|u−mj |2 +
λ

2

∫

Ij

|∂u
∂ν

|2.

Using Wirtinger inequality and setting λ = 2r we deduce that

∫

Ij

|u−mj |
∣

∣

∣

∣

∂u

∂r

∣

∣

∣

∣

dσ ≤ 4r2

2λ

∫

Ij

|uτ |2 +
λ

2

∫

Ij

|∂u
∂ν

|2

≤ r

∫

Ij

|uτ |2 + r

∫

Ij

|∂u
∂ν

|2

= r

∫

Ij

|∇u|2.

Finally summing over j, we get (27) and the monotonicity is proved.

The last conclusion of the proposition then follows from the case of equality in the above

inequalities.

Remark 8. We have used the basic inequality H1(Ii) ≤ 2πr in our monotonicity proof. But

if we assume H1(Ii) ≤ rπ(1 + δ) then we obtain a much better estimate, namely, that

r 7→ E(r)

r1+α

is non decreasing, with α = 1−δ
1+δ > 0. This will be one of our crucial ingredient in getting

C1 estimates.

3.2.3 An extension tool

Our second tool at our disposal to prove the regularity of the singular set will be the following

extension estimate.

Lemma 8. Let w ∈ W 1,2(∂B(0, 1)) and let h ∈ W 1,2(B(0, 1)) be its harmonic extension

(i.e. the unique harmonic function in the ball that concides with w on the circle). Then

∫

B(0,1)

|∇h|2dx ≤
∫

∂B(0,1)

∣

∣

∣

∣

∂w

∂τ

∣

∣

∣

∣

2

dH1.
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Proof. Let expend w in Fourier series. We get

w =
∑

n∈N

an cos(nθ) + bn sin(nθ).

Remembering the Laplacian operator in polar coordinates,

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
,

we easily check that the following function

∑

n∈N

rnan cos(nθ) + rnbn sin(nθ)

is harmonic and coincides with w on the circle. By uniqueness, it must be equal to h. Now

we compute
∫

B(0,1)

|∇h|2dx = π
∑

n∈N

n(a2n + b2n)

and
∫

∂B(0,1)

|∂w
∂τ

|2 = π
∑

n∈N

n2(a2n + b2n),

from which we deduce the lemma.

The above lemma is a convenient tool to create some competitors.

Lemma 9. Let I ⊂ ∂Br be an arc of circle such that

r(π − 10−3) ≤ H1(I) ≤ (π + 10−3)r

and let w ∈ H1(I). Then there exists some v ∈ H1(Br) such that v = g on I and
∫

Br

|∇v|2dx ≤ C

r

∫

I

|∂w
∂τ

|2dH1. (31)

Proof. We first consider a bi-Lipschitz mapping from I to a half circle S, the Lipschitz

constant being uniform for all I satisfying (31). Then we extend it symmetrically to the

entire circle and we apply the Lemma before on the harmonic extension.

3.2.4 The C1 regularity proof

We now prove some C1 regularity for the minimizers of Mumford-Shah.

Notation:

ωu(x, r) :=
1

r

∫

B(x,r)\K

|∇u|2 dx.

We will sometimes simply write ω(x, r).

With all the preliminary tools at hand we are now ready to prove the following statement.

Theorem 3.2. Let (u,K) be a minimizer of (25). Then if x ∈ K and r > 0 are such that

B(x, r) ⊂ Ω and

βK(x, r) + ωu(x, r) ≤ 10−5,

then K ∩B(x, r/10) is a C1,α regular curve.
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Ideas of proof. We follow the same approach as for the C1 regularity of almost minimizers.

We start with a ball where βK(x, r) +ωu(x, r) ≤ 10−5 and construct a first competitor with

“walls” to get a density estimate. Before that, and because of the Dirichlet term, we first

select a good radius s ∈ (r/2, r) such that

∫

∂Bs\K

|∇u|2dH1 ≤ 2

r

∫

Br

|∇u|2dx,

which is always possible. Then we replace K by the competitor L made of a diameter of

B(x, s), union two vertical walls, as we did for almost minimizers (proof of Proposition 4).

Then we use the extension Lemma 9 to define a suitable competitor v for the function u,

well defined in Bs \ L and equal to u outside Bs. This provides the estimate

H1(K ∩Bs) ≤ 2s+ Cr(β(x, r) + ω(x, r)) ≤ 2s(1 + 10−4).

This is enough to find some radius s′ ∈ (r/4, r/2) which intersects the singular set K by

exactly 2 opposite points {z, z′}. We then can proceed with a similar competitor, without

the walls, which provides now the better estimate

H1(K ∩Bs′) ≤ |z − z′|+ Cr(ω(x, r))

from which, by the fundamental height estimate (Lemma 5) easily yields

β(x, s′) ≤ Cω(x, r).

We then use the monotonicity formula which provides a decay of ω(x, r) by means of rα to

deduce some C1,α estimate on K.
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4 Lecture Day ♯4: Blow up limits and global minimizers

Before talking about blow-up limits of Mumford-Shah minimizers, we first look at blow-up

limits for an almost minimal set in 2D.

4.1 Blow-up limits of planar 1D-almost minimal sets

4.1.1 Monotonicity of density

We want to prove a monotonicity on the density ratio r 7→ H1(K∩B(x0,r))
r , when K is an

almost minimizer. For that we need to estimate the derivative of the function

ℓ(r) := H1(K ∩B(x0, r)).

The function ℓ is nondecreasing, thus in particular it is a BV function. Moreover, it is

absolutely continuous. Let try to give some bounds on the derivative. Firstly from Eilenberg’s

inequality
∫ r

0

♯{∂B(x0, t) ∩ E}dt ≤ H1(E ∩B(x0, r))

we obtain a first bound

♯{∂B(x0, t) ∩K} ≤ ℓ′(r)

for almost every r. Let us be more precise. From the coarea applied with the function

ϕ : x 7→ |x− x0| and the rectifiable set E ∩B(x, r) we get the equality

∫

E∩B(x0,r)

f(x)c(x)dH1(x) =

∫

R

(

∫

ϕ−1(t)∩E∩B(x0,r)

f(x)dH0

)

dt,

where c(x) is the coarea factor, which is equal here to

c(x) =

∣

∣

∣

∣

x− x0
|x− x0|

· τ(x)
∣

∣

∣

∣

,

where τ(x) is a unit tangent vector to K at point x, that exists H1 a.e. In other words, c(x)

is the cosine of the angle between the tangent vector at x and the normal direction x − x0.

Denoting this angle by θ(x) we define have proved the inequality

∫

E∩B(x0,r2)\B(x0,r1)

| cos(θ(x))|dH1(x) =

∫ r2

r1

♯{∂B(x0, t) ∩ E}dt.

Now let ν be the measure

ν := cos(x)H1|E
and let f(r) := ν(E ∩B(x0, r)). From the above we find that

♯{∂B(x0, t) ∩K} ≤ f ′(r) ≤ ℓ′(r). (32)

We can now prove the following monotonicity result.
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Proposition 9. Assume that K is an almost minimal set in Ω ⊂ R2 with gauge function

h : R+ → R+. Then for every x0 ∈ K and r ∈ (0,min(diam(K), dist(x0, ∂Ω)) we have that

d : r 7→ H1(K ∩B(x0, r))

r
+

∫ r

0

h(t)

t
dt

is non decreasing. Moreover, if h = 0 and d(r) is constant then K must be a cone.

Proof. We know that ♯{∂B(x0, t) ∩K} < +∞ for H1-a.e. r. We then pick such a radius r

and compare K in B(x0, r) with the competitor made of the union of segments joining x0

to each point of K on the circle, namely,

K ′ := (K \B(x0, r))
⋃

x∈∂B(x0,r)

[x0, x].

Comparing K with K ′ yields

H1(K ∩B(x0, r)) ≤ H1(K ′ ∩B(x0, r)) + rh(r) ≤ r♯{∂B(x0, t) ∩K}+ rh(r).

Using now (32) it comes

ℓ(r) ≤ r♯{∂B(x0, r) ∩K}+ rh(r) ≤ rf ′(r) + rh(r) ≤ rℓ′(r) + rh(r), (33)

from which we get the monotonicity result. Now assuming h = 0 and ℓ(r)
r is contant, we

deduce that the above inequalities in (33) must be all equalities (with h=0). In particular

cos(θ(x)) = 1 for all x which shows that K must be a cone and which finishes the proof of

the proposition.

4.1.2 Classification of blow-ups for 1D-minimal sets

We are now ready to classify the possible blow-up limits of a planar 1D-almost minimal set.

First we observe that due to the monotonicity behavior of density we know that the following

limit exists for all x0 ∈ K:

lim
r→0

H1(K ∩B(x0, r))

r
= ℓ0.

Now let rn → 0 and let

Kn :=
1

rn
(K − x0) .

The set Kn is almost minimizing in 1
rn
(Ω− x0) → R

2, with associated gauge function h(rn·)
(which converges to zero). It can be proved that Kn converges (in some local Hausdorff

sense) to some set K0 in R2 which satisfies the following facts:

• K0 is an almost minimal set in R2 (i.e. with h = 0)

• r 7→ H1(K0∩B(0,r))
r is constant, equal to ℓ0

• K0 is a cone, because the proof of monotonicity says that d′ = 0 thus 1
c(x) = 1 for all

x.
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• we deduce that K0 is entirely caracterized by its intersection with ∂B(0, 1), and must

be, either a line, or 3 half-lines meeting with 120 degree. Indeed, the intersection

cannot have only 2 points unless they are exactly on a diameter (otherwise we can

easily construct a better competitor), and it cannot have more than 3 points otherwise

there always exist at least two making an angle smaller than 120 degree which means

that a better competitor is possible.

Remark 9. For higher dimensions, the classification of blow-up limits is known in dimension

3, due to a result by Jean Taylor [Tay76]. Some minimal cones of dimension 2 in R4 was

also recently found by Xiangyu Liang in [Xia15, Xia14, Xia13].

4.2 Blow-up limits of Mumford-Shah minimizers in dimension 2

For Mumford-Shah minimizers we can also proceed to a blow-up process, by defining

ur :=
1√
r
u(rx+ x0) Kr :=

1

r
(K − x0),

and then let r → 0. Bonnet proved that the couple (ur,Kr) converges, in some sense, to

some couple (u,K) satisfying a certain minimization property (sort of local Mumford-Shah

minimizer in the whole plane). He called this a “global minimizer” and was able to completely

characterize them under a connected assumption.

Theorem 4.1 (Classification of connected global minimizers in R2). Let (u,K) be a global

minimizer in R2 such that K is connected. Then it belongs to the following list.

1. K = ∅ and u is constant.

2. (Line) K is a line and u is constant on each side.

3. (Propeller) K is the union of three half-lines meeting at their tip by angles of 120 degree.

4. (Cracktip) Up to translation, rotation, or additional constant, K is a half line and u is

equal to the cracktip function defined in (??).

Elements of proof. Let (u,K) be a global minimizer, and assume that K is connected. The

key ingredient is the monotonicity formula. It says that the quantity ϕ(r) = E(r)/r is

nondecreasing (Proposition 8). Thus, let ϕ(+∞) and ϕ(0) be the respective limits for r going

to 0 and +∞. First we notice that ϕ(+∞) is finite, due to the estimate
∫

Br
|∇u|2dx ≤ 2πr

valid for any global minimizer. Next, we use the blow-up and blow-in procedure, to obtain

at the limit two new pairs (u0,K0) and (u∞,K∞) which are again global minimizers with

connected singular sets, for which their respective quantity ϕ(r) is constantly equal to ϕ(∞)

for the blow-in and ϕ(0) for the blow-up. By the last conclusion of the monotonicity result

(Proposition 8), it follows that ϕ(∞) and ϕ(0) can be only equal to 0 or 1. Indeed, in the

case when it is not 0, using the last conclusion of Proposition 8 we deduce that u is of the

form C(r)+α(r) sin( θ−θ(r)
2 ) for some C(r), α(r) and θ(r). But since u is harmonic it follows

that θ(r) = θ0, α(r) = α
√
r and C(r) = C. Finally, the constant α must be equal to

√

2/π

due to the fact that we have a Mumford-Shah minimizer, which implies some variational

equalities (see [Dav05, Page 406]), leading to ϕ(r) = 1.
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Now we analyse two cases. The first case is when ϕ(∞) is equal to 0, then returning to

the original minimizer u, the monotonicity says that ϕ(r) = 0 all the time, thus ∇u = 0

and K locally minimizes the length H1 among topological competitors. This implies that K

must be one of the sets described in 1. 2. and 3. of the statement.

The most delicate case is when ϕ(∞) = 1. First notice that this value does not change

by changing the origin (i.e. the point at which balls are centered in the computation of ϕ).

Then, by a non trivial contradiction argument, it is possible to find in K a point at witch

ϕ(0) = 1. Looking now at this point we obtain that ϕ(r) is constant, equal to 1, and the

same argument as the one used just before says that u is of the type described in 4.

Remark 10. One way to prove the Mumford-Shah conjecture would be to improve the result

of Theorem 4.1, by proving the same statement as Theorem 4.1 without assuming connect-

edness of K. Some work in this direction has been done in [DL02].

Let us mention that the “finite number of curves” in the statement of Bonnet’s result,

follows from the classification of blow-up limits, as explained below.

Elements of proof for Theorem 3.1. Let us describe the ingredients to deduce Theorem 3.1

from the classification of blow-up limits. One first thing is to prove the finite number of

pieces. For this purpose Bonnet first proves that, even if the blow-up limit at one point may

not be unique in general, it is always of same type, which allows him to classify points with

respect to the type of the blow-ups (regular point, cracktip, or triple point). Then he is able

to prove that there is a finite number of triple points. Indeed, assuming that a sequence

of triple points Tn accumulates onto some point P , he gets a contradiction by considering,

basically, the blow up limit in B(Tn, 2|Tn − Tn+1|) which would converge to some fancy

global minimizer with two triple points. Indeed, it is not difficult to see that a blow-up

limit with “moving” center will also converge to one of the short list of global minimizer.

Now if a sequence of triple points accumulates, one can construct a certain blow-up (with

“moving center”, centered at the sequence of triple points) whose density at the limit does

not correspond to any of the list of Theorem 4.1, because it would have a density of two triple

points (in reality the blow-up sequence B(Tn, 2|Tn−Tn+1|) may not really work because one

should also take into consideration the speed of convergence to the respective propeller at

Tn and Tn+1, but the idea is roughly the same). This implies the finite number of endpoints

as well.

Then the C1-regularity relies on the fact that, if x0 is a point at which the blow-up limits

are a lines, then there exits r0 such that K is almost flat in B(x0, r) for all 0 < r < r0

and intersects ∂B(x0, r) on both sides for many r > 0. In this situation the monotonicity

Lemma can be straighten with a greater power, which implies that r 7→
∫

B(x0,r)
|∇u|2dx

behaves like Cr1+α (because the arc of circles are smaller, which lead to a better Poincaré-

Wirtinger constant). This, morally says that K is an almost-minimizing set for H1, with

excess of minimality controlled by Cr1+α. It is then classical to get C1,α/2 estimates from

this fact.
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4.3 Blow-up limits of Mumford-Shah minimizers in dimension 3

We finish this lecture with some results in dimension 3. Actually, the classification of blow-

up limits for a Mumford-Shah minimizer in dimension 3 is still an open problem. However,

some partial facts are known. We refer to [Lem09] for more details.

For instance, the following nice question of Guy David is still open: let (u,K) be a global

Mumford-Shah minimizer in R3 and assume that K is contained in a plane. Is it true that

K must be the whole plane or a half-plane ? This question was partially solved in [Lem14],

showing that if K is contained in a half-plane then it must be the whole half-plane.

A last, let us mention the work in [AH18] where a nice question about the global minimizer

“cracktip×R” in R3 is studied.

5 Lecture day ♯5: Regularity for connected minimizers

of the Griffith functional

In this section I presented the proof of the main result contained in [JFFA19] and I refer

directly to the paper for more details.
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